
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 18: Caching and ordering updates

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Project 3.

2. File systems recap.

3. Mapped files.

4. Ordering updates to a filesystem.

2

Agenda
1. Project 3.

2. File systems recap.

3. Mapped files.

4. Ordering updates to a filesystem.

3

Project 3: Due July 29
Multi-process test cases

Needed even to test swap-backed no fork to test that you clean
up when a process exits.
Call fork() before any calls to vm_map so you can test.

To test fork(), write a test for every state a page can be in at the time
of fork().

Swap-backed vs file-backed.
Resident vs non-resident.
Shared vs unshared.
…

4

Agenda
1. Project 3.

2. File systems recap.

3. Mapped files.

4. Ordering updates to a filesystem.

5

Recap: File system structure
Abstraction:

Every file is an array of bytes.
Can store large number of files.

File header contains
Metadata, e.g., owner, permissions, size.
Root of index structure to locate file’s contents.

Directory: (name, header disk block#) entries
Stored in a file.
Limited interface for users/apps to update.

6

Directories
Directory: mapping information for a set of files

Name of file  file header’s disk block # for that file.
Once, array of (name, file header’s disk block #) entries.
Modern file systems: hash table or B-tree.

Directories and files are largely equivalent.
Same storage structure.
Directory entry points to inode for file or directory.

7

Directory Example

Any differences in allowing application to update file versus
directory?
Users can put arbitrary data in a file. But a user can’t be allowed
to corrupt the file system by writing junk to a directory, solved with
limited set of system calls for updating directories.

8

Name Block #
“bin” 100

“users” 35
“tmp” 43

“foo.txt” 254

/ directory

Name Block #
“harshavm” 23
“pmchen” 99
“nham” 72

0

/users directory

Name Block #
“482.txt” 44

0
“src” 55

“foo.txt” 33

/users/nham directory

Example: /users/nham/482/notes
1. Read the file header for / (root directory), which contains

pointers to data blocks of the / directory.
2. Read data blocks of /, contains list of the files and

directories in /. Each entry contains amapping from
name  header’s disk block #. One of those entries is
“users”.

3. Read file header for /users.
4. Read data blocks for /users.
5. Read file header for /users/nham.
6. Read data blocks for /users/nham.
7. Read file header for /users/nham/482.
8. Read data blocks for /users/nham/482.
9. Read file header for /users/nham/482/notes.
10. Read first data block for /users/nham/482/notes.

9

May be helped by
caching the file header
for the current working
directory.

Unified view of multiple storage devices
Combine multiple storage devices into a file system

Each device contains own file system (starting with its root)
A filesystem on a different device can be mounted over a
directory, called a mount point, using the mount command.

Example:
/ (root)

bin (same device as /)
etc (same device as /)
tmp (separate storage device)
afs (network storage “device”)

Directory entry: 1) file, 2) directory, or 3) device

10

Data types for disk blocks
File systems store lots of data structures on disk.

Data blocks.
Directories.
File headers (inodes), indirect blocks.
Free lists (bitmaps of used, unused blocks).

How can you tell what type a block is?
Each is just a fixed number of bytes.
By what points to it (just like data structure in memory)
and the reason you got there.

11

File Cache
Caches file system blocks in physical memory.

Each block indexed by (device, logical block number).
Should cache be in physical or virtual memory?

If you need to write-back a dirty block, you should probably write it
to the actual device. The file cache is usually kept in physical
memory.

Should cache be write-through or write-back?
Write-through: poor performance.
Write-back: loses data on OS crash, power failure.

Current file systems:
Write-back but limit the time a dirty block can stay in the cache
before being written out to the device.
Background daemon writes dirty pages.

12

File cache vs. Virtual memory
Both use physical memory as a cache for disk.

Virtual memory: Use disk for increased capacity.
File systems: Use memory for faster performance.

Both compete for physical memory.
Another instance of local vs. global replacement.
Common to use global replacement.

Both are about managing memory. The big difference is
that the filesystem must be persistent. But they can
overlap.

13

Agenda
1. Project 3.

2. File systems recap.

3. Mapped files.

4. Ordering updates to a filesystem.

14

Memory-mapped files
Use the paging system to cache both virtual address
space and file system data.

Map file into a virtual address space.
Point the backing store for that part of the address
space at the file’s data blocks.
Writes will only happen as dirty blocks are evicted,
could be lost if the system crashes.

Example: How to load a program executable from disk
to memory?

15

16

tcsh-1% cat Sleep.cpp
#include <iostream>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

using namespace std;

int main()
{
cout << "pid = " << getpid() << endl;
sleep(1000);
}

tcsh-2% g++ Sleep.cpp -o Sleep
tcsh-3% ./Sleep &
[1] 89
tcsh-4% pid = 89

17

tcsh-5% cat /proc/89/maps
7f4a188b0000-7f4a188c7000 r-xp 00000000 00:00 164943 /lib/x86_64-linux-gnu/libgcc_s.so.1
7f4a188c7000-7f4a188c8000 ---p 00017000 00:00 164943 /lib/x86_64-linux-gnu/libgcc_s.so.1
7f4a188c8000-7f4a18ac6000 ---p 00000018 00:00 164943 /lib/x86_64-linux-gnu/libgcc_s.so.1
7f4a18ac6000-7f4a18ac7000 r--p 00016000 00:00 164943 /lib/x86_64-linux-gnu/libgcc_s.so.1
7f4a18ac7000-7f4a18ac8000 rw-p 00017000 00:00 164943 /lib/x86_64-linux-gnu/libgcc_s.so.1
7f4a18ad0000-7f4a18c6d000 r-xp 00000000 00:00 757460 /lib/x86_64-linux-gnu/libm-2.27.so
7f4a18c6d000-7f4a18c70000 ---p 0019d000 00:00 757460 /lib/x86_64-linux-gnu/libm-2.27.so
7f4a18c70000-7f4a18e6c000 ---p 000001a0 00:00 757460 /lib/x86_64-linux-gnu/libm-2.27.so
7f4a18e6c000-7f4a18e6d000 r--p 0019c000 00:00 757460 /lib/x86_64-linux-gnu/libm-2.27.so
7f4a18e6d000-7f4a18e6e000 rw-p 0019d000 00:00 757460 /lib/x86_64-linux-gnu/libm-2.27.so
7f4a18e70000-7f4a19057000 r-xp 00000000 00:00 757397 /lib/x86_64-linux-gnu/libc-2.27.so
7f4a19057000-7f4a19060000 ---p 001e7000 00:00 757397 /lib/x86_64-linux-gnu/libc-2.27.so
7f4a19060000-7f4a19257000 ---p 000001f0 00:00 757397 /lib/x86_64-linux-gnu/libc-2.27.so
7f4a19257000-7f4a1925b000 r--p 001e7000 00:00 757397 /lib/x86_64-linux-gnu/libc-2.27.so
7f4a1925b000-7f4a1925d000 rw-p 001eb000 00:00 757397 /lib/x86_64-linux-gnu/libc-2.27.so
7f4a1925d000-7f4a19261000 rw-p 00000000 00:00 0
7f4a19270000-7f4a193e9000 r-xp 00000000 00:00 165051 /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.25
7f4a193e9000-7f4a193f6000 ---p 00179000 00:00 165051 /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.25
7f4a193f6000-7f4a195e9000 ---p 00000186 00:00 165051 /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.25
7f4a195e9000-7f4a195f3000 r--p 00179000 00:00 165051 /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.25
7f4a195f3000-7f4a195f5000 rw-p 00183000 00:00 165051 /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.25
7f4a195f5000-7f4a195f9000 rw-p 00000000 00:00 0
7f4a19600000-7f4a19626000 r-xp 00000000 00:00 757373 /lib/x86_64-linux-gnu/ld-2.27.so
7f4a19626000-7f4a19627000 r-xp 00026000 00:00 757373 /lib/x86_64-linux-gnu/ld-2.27.so
7f4a19827000-7f4a19828000 r--p 00027000 00:00 757373 /lib/x86_64-linux-gnu/ld-2.27.so
7f4a19828000-7f4a19829000 rw-p 00028000 00:00 757373 /lib/x86_64-linux-gnu/ld-2.27.so
7f4a19829000-7f4a1982a000 rw-p 00000000 00:00 0
7f4a19940000-7f4a19942000 rw-p 00000000 00:00 0
7f4a19950000-7f4a19952000 rw-p 00000000 00:00 0
7f4a19960000-7f4a19962000 rw-p 00000000 00:00 0
7f4a19a00000-7f4a19a01000 r-xp 00000000 00:00 1203170 /mnt/c/Users/hamil/Google Drive/eecs482/W20Lectures/Sleep
7f4a19c00000-7f4a19c01000 r--p 00000000 00:00 1203170 /mnt/c/Users/hamil/Google Drive/eecs482/W20Lectures/Sleep
7f4a19c01000-7f4a19c02000 rw-p 00001000 00:00 1203170 /mnt/c/Users/hamil/Google Drive/eecs482/W20Lectures/Sleep
7fffe43bf000-7fffe43e0000 rw-p 00000000 00:00 0 [heap]
7fffead68000-7fffeb568000 rw-p 00000000 00:00 0 [stack]
7fffeb582000-7fffeb583000 r-xp 00000000 00:00 0 [vdso]
tcsh-6%

Agenda

1. Project 3.

2. File systems recap.

3. Mapped files.

4. Ordering updates to a filesystem.

18

Multiple updates and reliability
File system must ensure reliability/durability.

Okay to lose data in address space.
Data must survive crashes and power outages.
Assume: Only the update of single block is atomic
and durable.
Challenge: Crashes in midst of multi-step updates.

Example: Transfer $100 between accounts.
1. Deduct $100 from savings.
2. Add $100 to checking.

Crash between steps 1 and 2 = lose $100.
19

Other Examples
Move file from directory a to directory b.

1. Delete file from dir a.
2. Add file to dir b.

Create new (empty) file
1. Update directory to point to new file header.
2. Write new file header to disk.

How to fix these problems?

20

Ordering of updates
Careful ordering can fix some problems.

Example: Create file 482.txt in directory nham
Update directory first?
Create inode for new file first?

21

Ordering of updates
Careful ordering can fix some problems:

For example, creating file 482.txt in directory nham
Update directory first?

22

Directory
nham 1024

???

Never have a pointer from valid block to invalid one!

Ordering of updates
Careful ordering can fix some problems:

For example, creating file 482.txt in directory nham
Create inode first?

23

Directory

Inode
Size: 0
...

OK to modify unreachable blocks on disk.

Ordering of updates
Careful ordering can fix some problems:

For example, creating file 482.txt in directory nham
Create inode first?

24

Inode
Size: 0
...

Careful ordering goes from one consistent state to another.

Directory
nham 1024

Ordering not always enough
Example: Create a file and update the free block list.

1. Write new file header to disk.
2. Update directory to point to new file header.
3. Write the new free map.

Is 1, 2, 3 correct?
What about 3, 1, 2?

What about the bank account example?

25

ACID terminology
Database systems are commonly describing as offering ACID
properties. For a filesystem, we mostly care about atomicity and
durability.

Atomicity All or nothing. The operation either succeeds or
does nothing.

Consistency Representation invariants observed before and
after an operation.

Isolation Any intermediate states are invisible to other
transactions which only see the state before or
after.

Durability Once an operation succeeds, the changes persist
and will not be undone, even in the event of a
system failure.

26

Transactions
Need a way to create
transactions with atomicity
and durability. But only writes
to a single sector to a disk
are atomic.

How to make a sequence of
updates atomic?

Two main methods:

1. Shadowing.
2. Logging

27

begin
write disk
write disk
write disk

end // commit the transaction)

Shadowing
Replicate the data across two stores:

One is current version, other is backup
Current pointer points to the current version

28

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $500
Checking: $500

Pointer

Current: 1

At beginning of transaction, both replicas are identical

Shadowing
Transaction updates the backup (shadow)

First add $100 to savings

29

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $600
Checking: $500

Pointer

Current: 1

Note: modifying “unreachable” block

Shadowing
Transaction updates the backup (shadow)

Next remove $100 from checking

30

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $600
Checking: $400

Pointer

Current: 1

Note: modifying “unreachable” block

Shadowing
Transaction commit switches the pointer

This is point when updates become durable

31

Accounts
Savings: $500
Checking: $500

Accounts
Savings: $600
Checking: $400

Pointer

Current: 2

Note: updating single block = atomic update

Shadowing
Finally, must update new shadow

First, update savings

32

Accounts
Savings: $600
Checking: $500

Accounts
Savings: $600
Checking: $400

Pointer

Current: 2

Note: again, updating unreachable block

Shadowing
Finally, must update new shadow

Next, update checking

33

Accounts
Savings: $600
Checking: $400

Accounts
Savings: $600
Checking: $400

Pointer

Current: 2

Note: again, updating unreachable block

Shadowing summary
Can make arbitrary set of updates in transaction.

Pointer switch is always an atomic commit.

Downside?
Requires replicating data store.

Can reduce cost by shadowing on demand.
Sometimes called shadow paging.
Used in modern file systems (WAFL, ZFS, ...).

34

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 18: Caching and ordering updates
	Agenda
	Agenda
	Project 3: Due July 29
	Agenda
	Recap: File system structure
	Directories
	Directory Example
	Example: /users/nham/482/notes
	Unified view of multiple storage devices
	Data types for disk blocks
	File Cache
	File cache vs. Virtual memory
	Agenda
	Memory-mapped files
	Slide Number 16
	Slide Number 17
	Agenda
	Multiple updates and reliability
	Other Examples
	Ordering of updates
	Ordering of updates
	Ordering of updates
	Ordering of updates
	Ordering not always enough
	ACID terminology
	Transactions
	Shadowing
	Shadowing
	Shadowing
	Shadowing
	Shadowing
	Shadowing
	Shadowing summary

